BIRKBECK COLLEGE (University of London)

SCHOOL OF BIOLOGICAL SCIENCES

M.Sc. EXAMINATION FOR INTERNAL STUDENTS ON:

Postgraduate Certificate in Principles of Protein Structure MSc Structural Molecular Biology

CRYS024D7

PRINCIPLES OF PROTEIN STRUCTURE

Thursday 20 August 2015

Duration of examination: 3 hours

10.00 - 13.00

Students will be required to answer <u>8</u> out of 12 questions.

All questions carry equal marks.

Each question must start on a <u>new</u> page and the question number written at the top of <u>each</u> sheet.

The exam papers have not been prior-disclosed.

©Birkbeck College 2015 CRYS024D7 Page 1 of 5

- 1. Answer all parts;
 - a) Using alanine as an example, describe the difference between the L- and D- forms for amino acids. [2 marks]
 - b) Name the only non-chiral amino acid and what are the conformational effects? [2 marks]
 - c) Indicate which two amino acids have chiral side-chains. [2 marks]
 - d) Show how a peptide bond formed? [2 marks]
 - e) What is the difference between a *trans* and *cis* peptide bond ? [2 marks]
- 2. Answer both parts;
 - a) What is a hydrogen bond? [2 marks]
 - b) Indicate the torsion angles as defined in a polypeptide. [2 marks]
 - c) On a Ramachandran plot show the secondary structure regions for both beta sheets and alpha helix. Also show on your figure where a left handed alpha helix region is located. [6 marks]
- 3. Compare and contrast the detailed structural features of a standard alpha helix with the various forms of beta structure that occur in protein. [10 marks]
- 4. Answer all parts, Draw the following;
 - a) A beta turn. [2.5 marks]
 - b) A beta-alpha-beta motif . [2.5 marks]
 - c) A four helix bundle. [2.5 marks]
 - d) A Greek Key motif. [2.5 marks]

©Birkbeck College 2015 CRYS024D7 Page 2 of 5

- 5. How can you model alpha helix packing? [10 marks]
- 6. Answer both parts;
 - a) Discuss plagiarism and scientific fraud. [5 marks]
 - b) What key points are important to consider when publishing a scientific paper? [5 marks]
- 7. Answer all parts;
 - a) Explain in detail how the bioinformatics program BLAST can be used to select protein sequences that are likely to be homologous to a test sequence. Describe the results that are obtained from a BLAST run and explain how they should be interpreted; include in your explanation a precise definition of the term 'E-value'. [8 marks]
 - b) Explain why it is not always possible to tell whether two sequences are homologous from BLAST alone. What other programs might you use if the results are ambiguous? [2 marks]
 - 8. Answer all parts;
 - a) Describe the structure and function of each of the three main types of RNA that are involved in the process of protein transcription. [6 marks]
 - b) Briefly describe the process of protein synthesis at the molecular level, making reference where relevant to each of these types of RNA. [4 marks]

©Birkbeck College 2015 CRYS024D7 Page 3 of 5

- 9. Answer both parts;
 - a) Explain in detail, making reference to the electronic structure of atoms, how each of the following types of 'non-bonded' interactions that are found in proteins arises.
 [2 marks for each, total of 8 marks]
 - i. Van der Waals interactions
 - ii. Hydrogen bonds
 - iii. Ion pairs
 - iv. Aromatic-aromatic interactions
 - b) Which of these types of interaction cannot be made by the side chain of the amino acid tryptophan? Give a reason for your choice.[2 marks]
- 10. Answer all parts;
 - a) Explain briefly, using diagrams if you prefer, the structural difference between the monosaccharides glucose and galactose. [2 marks]
 - b) Describe how a sugar-binding site in a protein can distinguish between these structures in order to favour the binding of one monosaccharide over the other. [2 marks]
 - c) Describe the structure of the influenza protein haemagglutinin and explain how it uses interactions with a simple sugar to bind to cells in the human respiratory tract. [6 marks]

©Birkbeck College 2015 CRYS024D7 Page 4 of 5

- 11. Answer all parts;
 - a) Explain the function and role of the secretion systems found in the membranes of Gram negative bacteria. Why do Gram positive bacteria not require such complex systems? [3 marks]
 - b) Describe in detail the structure of the type IV secretion system and explain how a conformational change causes the system to become functional [6 marks].
 - c) Explain briefly how this system is involved in infectious disease.[1 mark].
- 12. Answer all parts;
 - a) Describe in detail, or draw, the structure of an immunoglobulin constant domain. What are the main differences between this structure and that of a variable domain? [4 marks]
 - b) Draw a schematic diagram showing the structure of the immunoglobulin IgG molecule. [6 marks total]

Indicate the following on your diagram;

- i. Each constant and each variable domain.
- ii. The location of the antigen binding sites.
- iii. The N- and C-termini of each chain.
- iv. Approximate locations for a carbohydrate-binding region and at least one disulphide bond.

©Birkbeck College 2015 CRYS024D7 Page 5 of 5